
Latency Hiding in Dynamic Partitioning and

Load Balancing of Grid Computing Applications*

Sajal K. Das, Daniel J. Har_e_

Dept. of Computer Science & Engineering

The University of Texas at Arlington

Arlington, TX 76019-0015, USA

{das, harvey} @cse. uta. edu

Rupak Biswas

NAS Systems Division
NASA Ames Research Center

Moffett Field, CA 94035-1000, USA

rbiswas @has. nasa. gov

Abstract

The b_formation Power Grid (IPG) concept developed

by NASA is aimed to provide a metacomputing platform

for large-scale distributed computations, by hiding the in-
tricacies of a highly heterogeneous environment and yet

maintaining adequate security. In this paper, we propose a

latency-tolerant partitioning scheme that dynamically bal-

ances processor workloads on the !PG, and minimizes data

movement and runtime communication. By simulating an
unsteady adaptive mesh application on a wide area net-

work, we study the performance of our load balancer un-

der the Globus environment. The number of IPG nodes,

the number of processors per node, attd the interconnect

speeds are paramelerized to derive conditions under which

the IPG would be suitable for parallel distributed process-

ing of such applications. Experimental results demonstrate

that effective solutions are achieved when the 1PG nodes

are connected by a high-speed asynchronous interconnec-
!i.o, _:et,;'ork.

1. Introduction

The InformatiGn Power Grid (IPG) infrastructure has

been developed by NASA and other collaborative partners

to harness the power of geographically distributed resources

(computers, databases, and human expertise) in order to

solve large-scale computational problems. App;ications
that would benefit from such an infrastructure include:

• Desktop coupling to remote supercomputer._ _o as to

provide access to large databases and high-end graph-
ics facilities [9].

-'1his work was supported by NASA Ames ResearchCenter underCo-
operative Agreement Number NCC 2-5393.

• User access to sophisticated L,astmments through re-

mote snpercomputer connections utilizing virttml real-

ity techniques [8].

• Remote interactions with supercompu*.er simula-

tions [10, ! 1].

Several attempts have recently been made to develop

what arc called computational grid capabilities and/or im-

plementations [I,1]. For example, the Condor system [19]

is developed to manage research studies at workstations

around the world. However, it did not adequately deal with

the security issues involved. Other grid-based syslems in-

clude Nimrod [1], N:_tSolve [4L NEOS [5], Legion [15],

and CAVERN [18]. The Globus Metacomputing Infrastruc--

ture roolkit [13] successfitlly provides a portable virtual

machine environment. It supports mechanisms t'or shar-

ing remote resources, provides adequate security, and al-

lows MPl-based message passing. Due to its portable and

modular nature. Globus has been cht_sen by NASA a._ the

middlewm'e to implement the IPG.

So far, limited studies have been performed to determine

the viability of parallel distributed computing on the IPG.

In [2], latency tolerance and load balancing modifications

were implemented for a CFD application to compensate

for slower communication speed. Results showed that the

application ran faster under Globus on two IPG nodes of

four processors each than on a single tightly-coupled ma-

chine of eight processors. However, this result is clouded

ia :hat asynchronous message passing was supported over

the high-speed link but not within the single platform. With

a goal to make more informative conclusions, in this pa-

per we simulate an unsteady adaptive mesh application on a

wide area network. The number of IPG nodes, the number

of processors per node, and the interconnect speeds are pa-
rametefized to derive conditions under which the IPG would

be suitable for parallel distributed processing of such appli-
cations.

Earlier.weproposedtwodifferentloadbalancingap-
proacheswithanunsteadyadaptivemeshasthetestcase
application.Thefirstapproach,calledPLUM[21],isan
architecture-independentframeworkwhichgloballyparti-
lionsthecomputationalmeshaftereachadaptationandde-
termineswhetherre-balancingtheloadwouldleadto re-
ducedtotalexecutiontime.If animprovementintheload
balancecanbeachieved,PLUMutilizesaneffectiveremap-
pingalgorithmto minimizetherequireddatamovement.
Applicationprocessingistemporarilysuspendedduringthe
partitioninganddataremappingoperations.Utilizationofa
parallelgraphpartitionerlikeParMeTiS[17]giveseffective
results.

The secondapproach,calledSymmetricBroadcast
Networks(SBN)[7], givesa general-purposetopology-
independentsolutiontodynamicloadbalancing.A salient
featureofthisapproachisthatit balancesprocessorwork-
loadswhiletheapplicationisrunning.Therefore,it isable
tohidethehighdatamigrationoverhead,albeitatthecostof
increasedinterprocessorcommunication.Resultsreported
in [3] indicatethatbothPLUMandSBNapproacheshave
theirrelativemerits,andthattheyachieveexcellentload
balancewithminimalextraoverhead.

Letussummarize the contributions of this paper. We

propose a novel partitioner, called MinEX, that optimizes

the two important steps of PLUM (balancing and remap-

ping) as part of the partitioning process. Instead of attempt-
ing to only balance the load like most other partitioners,
the objective of MinEX is to minimize the total runtime of

the application. This approach counters the possibility that
perfectly balanced loads can still incur excessive communi-

cation and redistribution costs while the application is being

processed. MinEX is also used to experiment with the la-

tency tolerant techniques on the IPG. Our experimental re-
suits show that MinEX reduces the number of elements mi-

grated by PLUM, and also lowers the percentage of edges
cut by SBN. For example, for 32 partitions with our test

case, PLUM showed an edge cut of 10.9% and redistributed

63,270 mesh elements. The corresponding values for the

SBN-based approach were 36.5% and 19,446. In contrast,
the MinEX partitioner values were 20.9% and 30,548 re-

spectively. Thus MinEX attempts to optimize both commu-

nication and remapping costs, and hence is found to be an

effective approach to latency hiding in dynamic load bal-

ancing for grid computing.

This paper is organized as follows. Section 2 introduces

the computational application to be tested and determines

its scalability. Section 3 describes the new MinEX parti-

tioner. Section 4 describes the experimental study, analyzes
the obtained results and draws conclusions as to the use of

the IPG for this and similar applications. Section 5 con-
cludes the paper.

2. "_rest Case Scenario

Many computational problems are often modeled as an

u|_stltlclured mesh of vertices and edges. To capture evolv-

ing features, the mesh topology is also frequently adapted.

For an efficient parallel implementation, this leads to dy-
namic load balancing in the sense that mesh objects will

have to be reassigned after each adaptation phase to re-

balance the workload among processors. It is critical to

minimize the overhead associated with remapping data sets,

and to reduce the communication between processors at the

next solution step. These goals are particularly important in
the IPG context where communication bandwidth between

nodes are likely to be much smaller than those within a sin-

gle multiprocessor machine.

The computational mesh considered for our experiments
in this paper simulates an unsteady environment with a

strongly time-dependent adapted region. As depicted in

Fig. I, a shock wave is propagated through an initial grid

to produce the desired effect. The computational mesh is
processed through nine adaptations by moving a cylindri-

cal volume across the domain with constant velocity. Grid
elements within the cylindrical volume are refined while

previously-refined elements are coarsened in its wake. Dur-

ing the processing, the size of the mesh increases from
50,000 elements to 1,833,730 elements.

Figure 1. Initial and adapted meshes (after lev-

els 1 and 5) for the simulated experiment.

To realistically simulate the overhead associated with

an adaptive mesh computation, two weights are associated

with each mesh vertex and one weight with each mesh edge.

These weights respectively reflect the number of time units

• NumberofProcessors
Latency 2 1418 16132 64 128 256 512 1024 2048

I Max. Tolerance 3777 1824 1148[614 324[168 89 :72] 58 51[57 [
I No Tolerance 4547 3193 1699l 1033 558 [302 I 173 123 I 115 109 [103 [

Table 1. Scalability analysis of the test application.

required for computation, data remapping, and communi-

cation cost. The total time required to process the vertices

assigned to a processor p must take into account all these
three metrics as defined below.

Processing Weight, W qt _', is the computational cost to pro-
cess a vertex v.

Redistribution Cost, Remap[,, is the overhead to copy the
data set associated with v from p to another processor. This

cost incurred at p includes operations like data packing and

initiating transmission. The redistribution cost incurred by

the processor receiving v is the sum of the communication

cost and the operations of unpacking and merging the data

into existing data structures. Clearly, if the data set for v is

already assigned to p, no redistribution cost is incurred.

Communication Cost, CommVp, is the cost to interact with
all vertices adjacent to v but whose data sets are not local to

p. Thus, if the data sets of all the vertices adjacent to v are

also assigned to p, the communication cost, Comm_, is 0.
We also use six additional metrics which are defined be-

low.

Weighted Queue Length, QWgt(p), is the total cost to pro-

cess the vertices assigned to p. It is defined as:

Qwgt p)= (wgt+Comm +Remap).
v assignedtop

TotalSystem Load, QWgtTOT, isthesum ofQwgt(p) over

all processors. This metric is used in Section 3.2 to decide
whether it is appropriate to reassign a vertex from one pro-
cessor to another.

Heaviest Load, MaxOWgt, is the maximum value of

QWgt(p) over all processors, and indicates the total time

required to process the application.
Lightest Load, MinQWgt, is the minimum value of

OWgt(p) over all processors, and indicates the workload of

the most lightly-loaded processor.
Average Load, AvgQWgt, is QWgtTOT/P, where P is the

total number of processors.

Load Imbalance Factor, LoadImb, represents the quality

of the partitioning and is defined as MaxQWgt / AvgQWgt.

Table 1 shows the scalability of our test application
where P is varied from 2 to 2048. The data was obtained

by simulating the application (details in Section 4). Each

column reflects non-dimensionalized HaxQWgt values in
thousands. The first row of the table assumes that maxi-

mum latency tolerance is achieved, while the second row

assumes that no latency tolerance is achieved. By maximum

latency tolerance, we mean the ability to utilize all avail-

able processors to overlap communication and redistribu-

tion costs. Further explanations are provided in Section 3.

Table 1 shows that this application can scale to over 128

processors with linear speedup, and therefore is a good can-

didate for an IPG implementation.

3. MinEX: A New Partitioner

Previous studies with this mesh application under
PLUM utilized a variety of general partitioners such as

ParMeTiS [17], UAMeTiS [22], DAMeTiS [22], Jostle-

MS [23], and Jostle-MD [23]. Note that UAMeTiS,

DAMeTiS, and Jostle-MD are diffusive schemes designed

to modify existing partitions to produce a processor alloca-
tion; whereas PMeTiS and Jostle-MS are global partitioners

which make no assumptions about the original mesh distri-

bution. Although all these partitioners achieve good load

balance while minimizing communication overhead, they

fail to consider the cost of moving data between proces-

sors. A unique feature of PLUM is to address this draw-

back through the use of an efficient heuristic procedure for

redistributing data to assigned processors.

In the following, we design, implement, and analyze

a novel partitioner, called MinEX, that optimizes compu-

tational, communication, and data remapping costs. We
also redefine the partitioning goal from producing balanced

loads to minimizing MaxQWgt. No direct comparisons

with other existing partitioners mentioned above are pos-
sible because MinEX also considers the data redistribution

cost while partitioning the computational mesh.

3.1. Design Principles

MinEX can be classified as a diffusive multilevel parti-

tioner. Diffusive algorithms [6] utilize an existing partition

as a starling point instead of partitioning from scratch. The
multi-level approach, originally introduced in [16], parti-

tions the graph in three steps -- contraction, partitioning,
and refinement -- each of which is described below.

Similar to other multilevel partitioners, the first step in
MinEX is to contract the mesh to a reasonable size. How-

ever, instead of repeatedly contracting the mesh in halves,

ThroTTle values _
Metric

Ma xQWg t I
2

3

4

5

6

7

8

LoadImb l
2

3

4

5

6

7

8

1993 1427 348 312 291 300 306 312 324

1847 1142 748 467 320 304 305 318 345

2035 1801 674 556 375 331 324 326 382

1868 1516 761 639 412 352 328 371 425

1834 1626 835 767 438 373 359 343 400

2081 1579 898 825 481 391 357 361 427

1884 1279 1032 758 505 383 371 369 414

1944 1451 1102 834 531 434 376 380 435

7.05 5.09 !.23 !. 11 1.01 1.00 1.00 1.00 1.00

8.54 4.16 2.74 !.81 1.26 1.14 !.04 1.00 1.00

7.15 6.40 2.50 2.11 1.41 1.19 1.05 1.02 1.01

6.63 5.4i 2.82 2.40 1.58 1.26 1.07 1.03 1.01

6.53 5.78 3.06 2.83 1.66 1.30 1.11 1.02 1.01

7.31 5.58 3.25 2.99 1.81 1.40 1.08 1.02 1.01

6.68 4.61 3.74 2.80 t.84 !.33 !.10 1.03 1.00

6.90 5.15 3.92 3.05 i.94 1.43 1.13 1.06 1.00

Table 2. Expected runtlme and load balance quality for varying ThroTTle values.

MinEX sequentially contracts one vertex at a time. The ad-

vantage of this approach is that a decision can be made each
time a vertex is later refined as to whether it should be as-

signed to another processor. This makes the algorithm more

flexible since the graph does not have to be doubled in size

before this decision could be made. If Ivl is the number

of vertices in the mesh, contraction requires O(IVI) steps

which is asymptotically no larger than that of contracting

the mesh sequentially in halves. Once the mesh is suffi-
ciently small, the remaining vertices are reassigned accord-

ing to the partitioning criteria described in Section 3.2.

The mesh is expanded back to its original size through

a refinement process. As each vertex is refined, a decision

is made as to whether or not it should be reassigned. This

decision employs the same partitioning criteria used by the

partitioning algorithm in the previous step. Each coarse ver-

tex reassignment in effect reassigns all of the computational

vertices that the coarse vertex represents.

3.2. Partitioning Criteria

The criteria for deciding whether a vertex should be reas-

signed from one processor to another, is based on two met-

rics: Gain and MinVar. Gain represents the change in

QWgtTOT that would result from a proposed vertex move.
A negative Ga i n would indicate that less total processing is

required after such a vertex reassignment. The partitioning

algorithm favors vertex moves with negative or small Gain

values that reduce or minimize overall system load.

Mi nVar is computed using the workload (i.e. QWgt(p))

for each processor p and the smallest load of any processor

(Hi nQWgt) in accordance with the following formula:

MinVar =Z(QWgt_)- MinQWgt) 2.

P

Basically, MinVar computes the variance of processor

workloads from that of the most lightly-loaded processor.

The objective is to initiate vertex moves that lower this

value. Since processors with large QWgt(p) values will

have large MinVar components, this criteria tends to move

vertices away from processors that have high runtime re-
quirements. AMinVar is the change in the MinVar value

after moving a vertex from one processor to another. A neg-
ative value indicates that Mi nVar has been reduced.

Let us now describe how the partitioning decisions are

made. For each vertex, v, consider all edges to adjacent

vertices that are assigned to other processors. Compute the

Gain and MinVar values that would result from moving

v to each of the adjacent processors. The move involves the

adjacent vertex that has the smallest value of Gain as long

as AMi.nVar < 0 and -Gain/AMinVar < ThroTTle,

where ThroTTle is a user-supplied parameter. To increase

efficiency, the program utilizes a minimum heap with point-

ers to vertex locations to quickly find the best move and di-

rectly delete entries without searching.

Conceptually, ThroTTle acts as a gateway that limits

increases in Gain based upon how much of an improve-
ment in HinVar can be achieved. Table 2 shows how

varying ThroTTle values affects the expected application

runtime (MaxQWgg) and load balance quality (Loadlmb).

The MaxQWgt entries are non-dimensionalized values in

thousands. These results were obtained by running the ex-

perimentsdescribedinSection4. Table2assumesanet-
workof32homogeneousprocessorsdistributedoveroneto
eightIPGnodes(clusters).Theinter-clusterinterconnect
speedis assumedto beathirdof theintra-clusterspeed.
ResultsshowthataThroTTle of64producesthelowest
overallMaxQWgt, and that larger ThroTTle values im-

prove LoadImb. Experiments with other network sizes us-

ing this same application have shown that ThroTTle gen-

erally converges at values between P and 2P. Note also

that for large values of ThroTTle, better LoadImb does

not necessarily imply lower MaxQWgt.

3.3. Latency Tolerance

The following steps illustrate how communication and
data redistribution can be reduced or eliminated.

Step h Initiate send of all data sets to be redistributed.

Step 2: For each edge (v, w), where the data set for vertex

v is local to processor p and the data set for vertex w is

local to another processor q, initiate send of communication

data. The metric Gomm_ v'_) represents the cost of this
communication. Also initiate send of communication data

needed by adjacent processors.

Step 3: Process vertices that are not waiting for incoming
transmissions.

Step 4: Receive and unpack any remapped data sets des-

tined for this processor.

Step 5: Receive and unpack communication data destined

for this processor.

Step 6: Repeat Steps 2 through 5 until all vertices are pro-
cessed.

These steps implement a strategy where processors dis-

tribute data sets and communication data as early as possi-

ble. The processing of internal vertices can then take place

while waiting for expected incoming messages. As data sets
and communication data are received, additional communi-

cations can be initiated and vertices processed. The most

optimistic expectation of this strategy is that the process-

ing activity can entirely hide the data redistribution Cost and

communication latency. At the other extreme, the most pes-

simistic view is that no latency tolerance is achieved. Exper-

iments simulating both views to analyze the effect of latency

tolerance on our test application are described in Section 4.

3.4. Data Structures

The following data structures are used by the MinEX

partitioner to perform its multilevel algorithm:

• Mesh : The adaptive mesh has the format

{IVl, IEI,vTot, *WaP, *VList, *ZList} where

11/1 is the number of active vertices in the mesh,

IEI is the number of edges in the mesh,

vTot is the total number of vertices (including merged

vertices),

*VMap is a pointer to the list of active vertices,

*VList is a pointer to the complete list of vertices,
and

*EList is a pointer to the list of edges.

. Vmap: A list of active vertices. None of these vertices

have been compressed through multilevel partitioning.

• VList: A complete list of vertices. Each vertex, v, is

defined by a VList record as

{Wgt, Remapp, lel, *e, merge, lookup, *vmap, *

heap, border} where

Wgt is the computational cost to process v,

Remapp is the redistribution cost to copy the data set

associated with v to another processor from p,

lel is the number of adjacent edges associated with v,

*e is a pointer to the first edge associated with v (sub-

sequent edges are stored in contiguous memory loca-
tions),

merge is the vertex that was merged with v during

a contraction operation (set to -1 if no merge took

place),
lookup is the active vertex that contains v after a series

of contraction operations (set to - 1 if no merges took

place),
*vmap is a pointer to the.position of v in the active

vertex table,

,heap is a pointer to the heap entry that relates to ver-

tex, v, and represents a potential reassignment of v,

and border is a boolean flag indicating whether v is

adjacent to vertices assigned to other processors.

• EList: A list of edges in the mesh. Each record is de-

fined as {w, Cornm(_,,w) } where (v, w) is an edge and
Comm(v,_.) is the associated communication weight.
Vertex v has an entry in VLisU and edges are located

using the *e pointer.

• Heap: The heap of potential vertex reassignments.

Each heap record is defined as {Gain, AMinVar,

v, p} which specifies the Gain and AMinVar that
would result from reassigning vertex v to processor p.

The min-heap is keyed by the Gain value.

• SLack: The stack of compressed vertex pairs,

(vl, v2). These vertices are refined in reverse order

from the order that they were compressed. This graph

contraction technique is described below.

3.5. Graph Contraction

The partitioner selects sets of randomly chosen pairs

of vertices that are assigned to the same processor p.

From this set. the vertex pair, (v,w), that has the largest

(.:omm I_, _,)/(Remap_ + Ren_ap_,') value is merged. This
formula attempts to find edges with large communication

costs while minimizing the potential data redistribution

overhead. The motivation behind this strategy is to arrive

at a contracted mesh with a small edge cut and a small data
distribution cost.

To contract a vertex v, a merged vertex record, M, is

created and the edge (v, w) is collapsed. The edges of M

are generated by utilizing the edge lists of vertices v and w.

VHap is adjusted to contain M and to remove v and w; IV I

is decremented and vTot is incremented; IE I is increased

by the number of edges created for M; and the pair (v, w)

is pushed onto :3tack.

This contraction procedure is implemented using a set

union/find algorithm so that edges of existing vertices can

remain unchanged. For example, if an existing vertex is

adjacent to v, accesses to its EList record will check

whether v has been merged. If it has, lookup will be ac-
cessed to quickly find the appropriate merged vertex. If

lookup is not current (i.e., lookup > vTot), the union/find

algorithm will search the chain of vertices beginning with

merge in order to update the lookup value, so that subse-

quent lookups can be done efficiently. Pseudo code describ-

ing the union/find procedure is given in Fig. 2.

Procedure Find (v)

If (merge == -1) Return v

If (lookup ! = -1) And (lookup <= vTot)

Then Return lookup = Find (lookup)

Else Return lookup = Find (merge)

Figure 2. The union/find algorithm.

3.6. Partitioning the Contracted Graph

Once the graph contraction process is complete, the par-

titioning can be performed. Because the number of vertices

is greatly reduced, the MiuEX algorithm can execute very

efficiently. The algorithm considers every remaining vertex

of the mesh to find potential reassignments that will reduce

Gain and HinVar as described in Section 3.2. All poten-

tial vertex reassignments are added to the min-heap. Actual

reassignments are executed in heap order. As a reassign-

ment is executed, the heap is adjusted to reflect the new

partition status.

3.7. Graph Expansion

The graph is restored to its original size by expanding

pairs of vertices in an order reversed from which they were

merged. The Stack data structure controls the order. As

pairs of vertices, (v, w), are refined, merged edges and ver-

tices are deallocated. The merge and lookup vertex num-

bers are also adjusted in the vertex table. The VMap table

is updated to delete the merged vertex, M, and to add v and

w; IV I is incremented and vTot is decremented; and IEI is

decreased by the number of edges created for M. After each

refinement, a decision is made as to whether a partition can

be improved by reassigning v or w. When reassignments

are made, adjacent border vertices are also considered.

4. Performance Results

The MinEX partitioner was executed with actual appli-

cation data to simulate an adaptive mesh computation for

a variety of system configurations. Individual runs model

networks with a particular number of processors P, number
of IPG nodes/clusters (7, ThroTTle values, and intercon-

nect speeds L In our experiments, P was varied from 2

to 2048, C was varied from ! to 8, ThroTTle was varied

to find the optimal value for minimizing runtime, and I was

varied to simulate both high-speed cluster interconnects and

low-speed wide area network connections.

Based on performance studies reported in [12, 20], typ-

ical communication latency and bandwidth slowdown from

integrated clusters to configurations connected through a

high-speed interconnect are in the range of 3 to 100. Wide
area network connections are 1,000 to 10,000 times slower

than the internal intra-connects of a single cluster. In our ex-

periments, we have assumed that the intra-cluster commu-

nication speed is normalized to a value of 1. Simulations
of inter-cluster communication assumed slowdown factors

of 3, i0, 100, and i,000. To simplify the analysis, we have

assumed that individual processors are homogeneous and

divided as evenly as possible among the clusters.

Table 3 shows results of experimental runs analyzing

the effect of varying numbers of clusters and intercon-

nect speeds, assuming P -: 32 homogeneous processors.

The interconnect speeds indicate the slowdown factor rela-

tive to the intra-cluster communication speed. To be con-
sistent with Tables 1 and 2, runtimes are shown as non-

dimensionalized values in thousands. Table 3(a) charts the

experimental results when no latency tolerance is achieved,
while Table 3(b) assumes maximum latency tolerance. The

following conclusions can be drawn from the experiments.

As the interconnect speed is reduced, the slowdown ex-

perienced by utilizing additional clusters increases dramati-

cally. For example, the runtime metric in Table 3(a) is 4,102
when two clusters and an interconnect slowdown of 1000 is

assumed; however, the metric is 93,566 when eight clusters

are assumed. Thus, performance deteriorates by almost a
factor of 22.8. If we consider an interconnect slowdown of

3, the performance degradation is only 1.3. The same pat-

tern holds true in Table 3(b).

Clusters
InterconnectSpeeds

3 10 100 1000
473 473 473 473
728 863 1228 4102
755 1168 2783 18512
791 1361 3667 25040
854 1649 5677 53912
915 1717 8521 76169
956 1915 1095880568
968 2178 1149293566

Clusters
InterconnectSpeeds

3
287'
298
322
328
336
345
352
357

10 100 1000
287 287 287
469 763 3941
548 2386 12705
680 3297 21888

768 4369 33092

856 5044 52668

893 5480 61079

1048 5721 61321

(a) No latency tolerance (b) Maximum latency tolerance

Table 3. Expected runtime for varying cluster sizes (P = 32) and interconnect speeds.

For the mesh application considered, Globus over low-

speed networks such as the Internet is not a viable approach

assuming current technology. In fact, the interconnection

speed must improve by at least an order of magnitude be-

fore this approach could be useful. At present, applications
would have to have little mntime communication and data

set remapping for low-speed wide area networks to be prac-
tical interconnects.

We can compare the effectiveness of latency tolerant al-

gorithms to those without latency tolerance, by measuring

runtimes of each approach as the number of clusters and

interconnect speeds are varied. The performance improve-

ments using latency tolerance increase dramatically as the

number of clusters increases. This can be verified by com-

paring the same rows from Tables 3(a) and 3(b). For exam-

ple, consider the results with eight clusters. The runtime im-

provements comparing latency tolerant algorithms to those

with no latency tolerance are factors of 2.7, 2.1,2.0, and 1.5,

respectively, for interconnect slowdowns of 3, 10, 100, and

1000. In contrast, results with two clusters indicate gains of
2.4, i .8, 1.6, and 1.0, respectively, for the same interconnect

slowdowns. Results clearly demonstrate that utilizing more

clusters give greater runtime improvement when employing

latency tolerance.

The same is also true when the interconnect slowdowns

are varied (this can be analyzed by comparing the corre-

sponding table columns). For example, with an intercon-

nect slowdown of 1000, the improvements in runtime by

utilizing latency tolerance are 1.6, 1.0, 1.5, 1.1, 1.6, 1.4,

1.3, and 1.5, respectively, for one to eight clusters. On the
other hand, with an interconnect slowdown of 10, the cor-

responding improvements are 1.6, 1.8, 2.1, 2.0, 2.1, 2.0,

2.1, and 2. I. In this case, results surprisingly demonstrate

that latency tolerance has a bigger payoff when intercon-

nect slowdowns are smaller. Additional investigations are

required to verify/counter this observation.

For our test application, GIobus could be a viable ap-

proach if a high-speed interconnect (slowdown factor be-

tween 3 and 10) between clusters is utilized. Results in Ta-

bles 3(a) and 3(b) comparing cr.e and eight clusters with an
interconnect slowdown of 3 show runtime deterioration fac-

tors of 2.04 and 1.24, respectively. Similar comparisons for
an interconnect slowdown of 10 show deterioration factors

of 4.60 and 3.65, respectively. These factors, being smaller

than the number of clusters, indicate a relative speedup
when the number of clusters increases.

5. CondusioILs

We presented a latency-tolerant partitioner, called

MinEX, that not only balances processor workloads but also
minimizes data movement and runtime communication, for

adaptive mesh applications that are executed in a parallel

distributed fashion on the IPG. Additional future experi-

ments that are planned will test MinEX performance in the

context of different application classes and devise metrics

to compare it with other popular panitioning schemes. We

also analyzed the conditions that are required for the IPG to
be an effective tool for such distributed computations. Our
results demonstrated that MinEX is a viable load balancer

provided the IPG nodes are connected by a high-speed asyn-

chronous interconnection network. We are currently imple-

menting a parallel version of MinEX. An area of further

research includes mathematical analysis of latency toler-

ance and performance slowdowns based on the interconnect

speed, the numbers of clusters employed, and the topology
of the mesh.

References

[1] D. Abramson, R. Sosic, J. Giddy, and R. Hall, "Nim-

rod: A tool for performing parameterized simulations

using distributed workstations," 4th IEEE Symposium

on High Performance Distributed Computing, 1995.

[21

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[Io]

[ll]

[12]

S. Barnard, R. Biswas, S. Saini, R. Van der Wijn-

gaart, M. Yarrow, and L. Zechtzer, "Large-scale dis-
tributed computational fluid dynamics on the Informa-

tion Power Grid using Globus,'" 7th Symposium on the

Frontiers of Massively Parallel Computation, 1999,
60---67.

R. Biswas, S.K. Das, D.J. Harvey, and L. Oliker, "Par-

allel dynamic load balancing strategies for adaptive
irregular applications," Applied Mathematical Mod-
elling, 25 (2000) 109-122.

H. Casanova and J. Dongarra, "NetSolve: A net-

work server for solving computational science prob-
lems," Technical Report CS-95-313, University of
Tennessee, 1995.

J. Cryzyk, M. Meznier, and J. More, "The Network-

Enabled Optimization System (NEOS) server,"

Preprint MCS-P615-0996, Argonne National Labora-
tory, 1996.

G. Cybenko, "'Dynamic load balancing for distributed-
memory multiprocessors," Journal of Parallel and

Distributed Computing, 7 (1989) 279-301.

S.K. Das, D. Harvey, and R. Biswas, "'Parallel process-

ing of adaptive meshes with load balancing," 27th In-

ternational Conference on Parallel Processing, 1998,

502-509. (Extended version currently under revision

for IEEE Transactons on Parallel and Distributed Sys-
tems.)

T. Defanti, M.D. Brown, and R. Stevens, "Virtual

reality over high-speed networks," IEEE Computer

Graphics and Applications, 16 (1996) 42--43.

T. Defanti, 1. Foster, M. Papka, R. Stevens, and T.

Kuhifuss, "'Overview of the l--Way wide area visual

supercomputing," International Journal of Supercom-
puter Applications, 10 (1996) 123-130.

D. Diachin, L. Freitag, D. Heath, J. Herzog, W.

Michels, and E Plassmann, "Remote engineering tools

for the design of pollution control systems for com-

mercial boilers," International Journal of Supercom-
puter Applications, 10 (1996) 208-218.

T. Disz, M. Papka, M. Pellegrino, and R. Stevens,

"'Sharing visualization experiences among remote vir-

tual environments," International Workshop of High

Perfimnance Computing for Computer Graphics and

Visualization, Springer-Verlag, 1995, 217-237.

1. Foster and N. Karonis, "A grid-enabled MPI: Mes-

sage passing in heterogeneous distributed computing

systems," Supercomputing'98, 1998.

[131

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

I. Foster and C. Kesselman, "Globus: A metacomput-

ing infrastructure toolkit," International Journal of Su-
percomputer Applications, I I (1997) 115-128. (Also

at http ://W_rw".globus, org.)

I. Foster and C. Kesselman, The Grid: Blueprint for

a New Computing Infrastructure, Morgan Kaufmann,
1999.

A. Grimshaw, W. Wulf, and the Legion team, "The

Legion vision of a worldwide virtual computer," Com-
munications of the ACM, 40 (1997) 39-45.

B. Hendrickson and R. Leland, "A multilevel al-

gorithm for partitioning graphs," Technical Report
SAND93-1301, Sandia National Laboratories, 1993.

G. Karypis and V. Kumar, "Parallel multilevel k-way

partitioning scheme for irregular graphs," Technical
Report 96-036, University of Minnesota, 1996.

J. Leigh, A. Johnson, and T. DeFanti, "CAVERN: A

distributed architecture for supporting scalable persis-

tence and interoperability in collaborative virtual en-

vironments," Virtual Reality Research, Development
and Applications, 2 (!997) 217-237.

M. Litzdow, M. Livny, and M.W. Mutka, "Condor-
a hunter of idle workstations," 8th International Con-

ference of Distributed Coniputing Systems, 1988, 104-
Ili.

S. Nog and D. Kotz, "'A performance comparison of
TCP/IP and MPI on FDDI, fast Ethemet, and Eth-

ernet," Technical Report PCS-TR95-273, Dartmouth
College, 1996.

L. Oliker and R. Biswas, "'PLUM: Parallel load bal-

ancing for adaplive unstructured meshes," J,,ur,al _

Parallel and Distributed Computing, 52 (1998) 150-
177.

K. Schloegel, G. Karypis, and V. Kumar, "Multi-

level diffusion schemes for repartitioning of adaptive

meshes," Journal of Parallel and Distributed Comput-
ing, 47 (1997) 109-124.

C. Walshaw, M. Cross, and M. Everett, "Parallel dy-
namic graph partitioning for adaptive unstructured

meshes," Journal of Parallel and Distributed Comput-
ing, 47 (1997), 102-108.

